2,996 research outputs found

    Significance of storage conditions on the flow properties of wheat flours

    Get PDF
    Flow properties of wheat flours are influenced by their intrinsic properties and environmental conditions during handling. This study evaluated the effects of environmental conditions (temperature and relative humidity- %RH) and flour properties (particle size and wheat class) on the flow properties of wheat flours. Size fractions from hard red winter (HRW) and soft red winter (SRW) wheat were produced through sieving. Flour fractions were then exposed to various temperature (25 and 35 degree Celsius) and relative humidity (50, 60, and 70%RH) combinations (t=3 h) to evaluate the effects of environmental conditions. Flow indicators (Hausner ratio – HR and compressibility index - CI) and flow (bulk, dynamic, and shear) properties were measured for the wheat flours after treatment. Shape analysis showed that all flour fractions were spherical based on their aspect ratio (>0.7) and elongation (4.0) which indicates poorer flowability. Higher humidity levels (60 and 70%) also caused poorer flowability for the wheat flours after exposure. The results from this study show that both environmental factors and flour characteristics have significant effects on flour flow properties. Handling wheat flours at lower humidity levels and higher temperatures improve flowability. Hard wheat flours were more flowable than soft wheat flours; coarser fractions from both wheat types flow better than finer fractions

    Acclimation responses of gill ionocytes of red tilapia (Oreochromis mossambicus × O. niloticus) to water salinity and alkalinity

    Get PDF
    To understand the acclimation strategies of red tilapia to different environments, this study aimed to evaluate different responses of red tilapia (O. mossambicus × O. niloticus) to salinity (10-30‰), alkalinity (1-3 gL^-1 NaHCO3) and salinity and alkalinity (10/1-30/3 ‰/gL^-1 NaHCO3) environments. Localization, type, size, and numeration of gill ionocytes were investigated on the same specimens by scanning electron microscopy (SEM) and immunohistochemistry (IHC) with antibodies of Na+/K+-ATPase (NKA), Na+/K+/2Cl-contransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR) and carbonic anhydrase (CA). Ionocytes were only located on filaments conducted by SEM. Four types of ionocytes namely pit, convex, concave and transitory types were determined morphologically by their apical openings of which concave and transitory type were not present in freshwater (FW) and saltwater (SW) fish (10). Both ionocytes size and number increased with elevated stress levels. In comparison to FW, density of ionotypes increased to about 4.75, 3.00 and 3.44 fold in SW (30), AW (3) and S&AW (30/3) respectively. Immunoreactive cells on gill filaments confirmed branchial distribution of ionocytes. Immunoreaction of NKA, NKCC and CA appeared in FW except for CFTR while they all appeared in SW (30), AW (3) and S&AW (30/3)

    Melting behavior of ultrathin titanium nanowires

    Get PDF
    The thermal stability and melting behavior of ultrathin titanium nanowires with multi-shell cylindrical structures are studied using molecular dynamic simulation. The melting temperatures of titanium nanowires show remarkable dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm, there is no clear characteristic of first-order phase transition during the melting, implying a coexistence of solid and liquid phases due to finite size effect. An interesting structural transformation from helical multi-shell cylindrical to bulk-like rectangular is observed in the melting process of a thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure

    A novel layer-structured PtN₂: first-principles calculations

    No full text
    Platinum nitride as the first successfully synthesized noble metal nitride shows superior mechanical properties and exotic electronic structure that rival those of conventional transition metal nitrides. In the past diverse crystal structures have been proposed to understand its unusual properties. However, very few works pay attention to the dynamic stability of these phases. Here, we examine the potential structures of platinum nitride with a chemical composition of PtN₂ by utilizing a widely adopted evolutionary methodology for crystal structure prediction. Except reproducing the previously proposed phases, we also identify a Pmmm symmetric novel layer structure with a low formation enthalpy that is slightly lower than those of marcasite and CoSb₂ structures but slightly higher than that of pyrite structure. The elastic constants and the lattice dynamical calculations show that this layer-structured PtN₂ is mechanically and dynamically stable. The calculated band structures suggest this new phase together with the simple tetragonal phase are metallic, while other phases are insulators. In addition, it is found that the fluorite structure is dynamically unstable by the phonon spectrum calculations, although it is mechanically stable as suggested by calculated elastic constants.Розглянуто потенційні структури нітриду платини з хімічним складом PtN₂, використовуючи широко прийняту еволюційну методологію прогнозування кристалічних структур. Крім відтворення раніше запропонованих фаз, ідентифіковано нову симетричну шарувату структуру, просторова група Pmmm, з низькою ентальпією формування, яка трохи менша, ніж ентальпії структур марказиту і CoSb₂, але дещо більша, ніж ентальпія структури піриту. Постійні пружності і динамічні розрахунки решітки показують, що цей нітрид платини (PtN₂) з шаруватою структурою механічно і динамічно стабільний. Розраховані зонні структури дозволяють припустити, що ця нова фаза разом з простою тетрагональною фазою є металічною, тоді як інші фази є діелектричні. Розрахунками фононного спектру встановлено, що структура флюориту динамічно нестабільна, хоча механічно стабільна, як передбачається розрахованими константами пружності.Рассмотрены потенциальные структуры нитрида платины с химическим составом PtN₂, используя широко принятую эволюционную методологию прогнозирования кристаллических структур. Кроме воспроизведения ранее предложенных фаз, идентифировано новую симметричную слоистую структуру, пространственная группа Pmmm, с низкой энтальпией формирования, которая немного меньше, чем энтальпии структур марказита и CoSb₂, но немного больше, чем энтальпия структуры пирита. Постоянные упругости и динамические расчеты решетки показывают, что этот нитрид платины (PtN₂) со слоистой структурой механически и динамически стабилен. Рассчитанные зонные структуры позволяют предположить, что эта новая фаза вместе с простой тетрагональной фазой является металлической, тогда как другие фазы являются диэлектрическими. Расчетами фононного спектра установлено, что структура флюорита динамически нестабильна, хотя механически стабильна, как предполагается рассчитанными константами упругости

    Density functional study of Aun_n (n=2-20) clusters: lowest-energy structures and electronic properties

    Get PDF
    We have investigated the lowest-energy structures and electronic properties of the Aun_n(n=2-20) clusters based on density functional theory (DFT) with local density approximation. The small Aun_n clusters adopt planar structures up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a structural transition from tabular cage-like structure to compact near-spherical structure is found around n=15. The most stable configurations obtained for Au13_{13} and Au19_{19} clusters are amorphous instead of icosahedral or fcc-like, while the electronic density of states sensitively depend on the cluster geometry. Dramatic odd-even alternative behaviors are obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of gold clusters. The size evolution of electronic properties is discussed and the theoretical ionization potentials of Aun_n clusters compare well with experiments.Comment: 6 pages, 7 figure

    Recalculation of QCD Corrections to bsγb \to s \gamma Decay

    Full text link
    We give a more complete calculation of bsγb \to s\gamma decay, including leading log QCD corrections from mtopm_{top} to MWM_W in addition to corrections from MWM_{W} to mbm_b. We have included the full set of dimension-6 operators and corrected numerical mistakes of anomalous dimensions in a previous paper\cite{Cho}. Comparing with the calculations without QCD running from mtopm_{top} to MWM_W\cite{Mis}, the inclusive decay rate is found to be enhanced. At mt=150m_t=150GeV, it results in 12\% enhancement, and for mt=250m_t=250GeV, 15\% is found. The total QCD effect makes an enhanced factor of 4.2 at mt=150m_t=150GeV, and 3.2 for mt=250m_t=250GeV.Comment: 16 pages, 7 figures (uuencoded ps files), Changes of description. To appear in Phys. Rev.

    Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection

    Get PDF
    We present graphene oxide (GO) nanosheets functionalized long period grating (LPG) for ultrasensitive hemoglobin sensing. The sensing mechanism relies on the measurement of LPG resonant intensity change induced by the adsorption of hemoglobin molecules onto GO, where GO as a bio-interface linkage provides the significant light-matter interaction between evanescent field and target molecules. The deposition technique based on chemical-bonding associated with physical-adsorption was developed to immobilize GO nanosheets on cylindrical fiber device. The surface morphology was characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. With relatively thicker GO coating, the refractive index (RI) sensitivity of GO-LPG was extremely enhanced and achieved −76.5 dB/RIU, −234.2 dB/RIU and +1580.5 dB/RIU for RI region of 1.33-1.38, 1.40-1.44 and 1.45-1.46, respectively. The GO-LPG was subsequently implemented as an optical biosensor to detect human hemoglobin giving a sensitivity of 1.9 dB/(mg/mL) and a detectable concentration of 0.05 mg/mL, which was far below the hemoglobin threshold value for anemia defined by World Health Organization. The proposed GO-LPG architecture can be further developed as an optical biosensing platform for anemia diagnostics and biomedical applications

    Unraveling the diversification and systematic puzzle of the highly polymorphic Psammobates tentorius (Bell, 1828) complex (Reptilia: Testudinidae) through phylogenetic analyses and species delimitation approaches

    Get PDF
    The high level of phenotypic diversity in southern African tent tortoises (Psammobates tentorius complex) has for decades prevented systematists from developing a stable taxonomy for the group. Here, we used a comprehensive DNA sequence dataset (mtDNA: Cytb, ND4, ND4 adjacent tRNA-His, and tRNA-Ser, 12S, 16S; and nDNA: PRLR gene) of 455 specimens, and the latest phylogenetic and species delimitation analytical procedures, to unravel the long-standing P. tentorius complex systematic puzzle. Our results for mtDNA and nDNA were incongruent, with the poorly supported nDNA phylogeny differentiating the three recognized subspecies, and showing potential hybridization in some regions. In contrast, the concatenated mtDNA phylogeny identified seven operational taxonomic units, with strong support. Clades 1, 4, 5, and 7 corresponded to tortoises identified as P. t. tentorius, clade 3 to P. t. trimeni, and clades 2 and 6 to P. t. verroxii. Our analyses showed conflicting topologies for the placement of C6 (P. t. verroxii north of the Orange River), with stronger support for it being sister to C2 + C3 than to the other clades. Clades 1, 2, and 6 had significantly higher genetic diversity than clades 3, 4, 5, and 7, perhaps because these clades inhabit substantially larger areas
    corecore